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6.3

What is DP?

Dynamic Programming (DP) is an approach that is
designed to economize the computational requirements
for solving large problems.

The basic idea in using DP to solve a problem is to split up
the problem into a number of stages.
Each stage is associated with one subproblem, and the
subproblems are linked together by some form of
recurrence relations.
The solution of the whole problem is obtained by solving
these subproblems using recursive computations.

Three steps:
1 Defining subproblems

2 Finding recurrences

3 Solving the base cases
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6.4

A simple path problem - a shortest path from A to B

Define

S(A) = the length of the shortest path from A to B

S(i) = the length of the shortest path from i to B
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6.5

A simple path problem - a shortest path from A to B

Define

S(A) = the length of the shortest path from A to B

S(i) = the length of the shortest path from i to B

⇒ S(A) = min{aAC + S(C),aAD + S(D)},
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6.6

A simple path problem - a shortest path from A to B

Repeating this argument, we can set up a recurrence relation
as follows:

S(A) = min{3 + S(C),2 + S(D)}
S(C) = min{7 + S(E),6 + S(F )}
S(D) = min{9 + S(F ),5 + S(G)}

...
S(O) = 4 + S(B)

S(P) = 3 + S(B).

Clearly we can see that S(B) = 0.
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6.7

A simple path problem - a shortest path from A to B

We can compute the values of S(i) recursively by considering
nodes further and further away from B:

S(O) = 4 + S(B) = 4; S(P) = 3 + S(B) = 3
S(L) = 7 + S(O) = 11; S(M) = min{4 + S(O),10 + S(P)} = 8;
S(N) = 6 + S(P) = 9; · · ·
S(A) = min{3 + S(C), 2 + S(D)} = 25.

The solution of the simple shortest path problem is now readily
seen. The length of the shortest path from A to B is given by
S(A) = 25.
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6.8

A simple path problem - a shortest path from A to B

We can compute the values of S(i) recursively by considering
nodes further and further away from B:

S(O) = 4 + S(B) = 4, P(O) = B;

S(P) = 3 + S(B) = 3, P(P) = B
S(L) = 7 + S(O) = 11, P(L) = O;

S(M) = min{4 + S(O),10 + S(P)} = 8, P(M) = O;

S(N) = 6 + S(P) = 9, P(N) = P; · · ·
S(A) = min{3 + S(C), 2 + S(D)} = 25, P(A) = C

The shortest path is obtained by following the direction given by
P(i). P(A) = C; P(C) = F ; P(F ) = J; P(J) = M; P(M) = O;
P(O) = B. So the shortest path is A− C − F − J −M −O − B



Introduction to
Dynamic

Programming

Introduction

A simple path example

Terminology and
Comments

More path problems

A More Complicated
Example

Computational
Efficiency

Doubling-up Procedure

6.9

Terminology and Comments

Stage
The problem can be divided into stages, with a policy
decision required at each stage.

The stages represent different time periods in the
problem’s planning horizon.
For example, Inventory problem
Sometimes the stages do not have time implications.
For example, shortest path problem
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6.10

Terminology and Comments

States
Each stage has a number of states associated with the
beginning of that stage.

The states reflect the information required to fully assess
the consequences that the current decision has upon
future actions.
For example, Inventory problem: the inventory level on
hand of the commodity

Shortest path problem: the intersection a
commuter is in at a particular stage
No rules for specifying the states of a system.
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6.11

Terminology and Comments

Essential properties that should motivate the selection of
states:

The state should convey enough information to make future
decisions without regard to how the process reached the
current state; and

The number of state variables should be small.

The effect of the policy decision at each stage is to
transform the current state to a state associated with the
beginning of the next stage (possibly according to a
probability distribution.)

The solution procedure is designed to find an optimal
policy for the overall problem.
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6.12

Terminology and Comments

Recursive Optimization
Recursive optimization procedure builds to a solution of
the overall N-stage problem by first solving a one-stage
problem and sequentially including one stage at a time
and solving one-stage problems until the over optimum
has been found.

Backward induction process,
forward induction process.

Basis of the recursive optimization: principle of optimality
Any subpolicy of an optimum policy from any given state
must itself be an optimum policy from that state to the
terminal states.
⇒ Given the current state, an optimal policy for the
remaining stages is independent of the policy decisions
adopted in previous stages.
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6.13

Terminology and Comments

Optimal value function
It measures the optimal value for each state at every
stage.

S(i) in Example 1 is called an optimal value function, and i
is called the argument of the function.

There is no fixed rule to define these optimal value
functions.

Recurrence relation
Define a recurrence relation between the values of the
optimal value functions.
Makes DP well suited to compute solutions.
For example, the recurrence relation at the node A is

S(A) = min{aAC + S(C),aAD + S(D)}.

aAC denotes the immediate return of the decision “up".
The optimal value (e.g. S(A)) is given by choosing the
decision that optimizes the sum of the immediate return
and the optimal value of the remaining process.



Introduction to
Dynamic

Programming

Introduction

A simple path example

Terminology and
Comments

More path problems

A More Complicated
Example

Computational
Efficiency

Doubling-up Procedure

6.14

Terminology and Comments

Boundary conditions
The solution procedure must start with arguments at which
the values of the optimal value function are obvious.

For example, S(B) = 0.

Optimal policy function
The rule that associates the best decision with each
subproblem.

For example, P(i).



Introduction to
Dynamic

Programming

Introduction

A simple path example

Terminology and
Comments

More path problems

A More Complicated
Example

Computational
Efficiency

Doubling-up Procedure

6.15

Terminology and Comments

To solve a problem by DP can be described simply as
follows:

1 Define an optimal value function.

2 Using the principle of optimality, determine a recurrence
relation.

3 Identify the boundary conditions. Starting with the boundary
conditions, and using the recurrence relation, determine
concurrently the optimal value and policy functions.

4 Determine the solution of the problem by using the optimal
value and policy functions.

Crux: Choosing a suitable optimal value function for which
a recurrence relation can be determined.
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6.16

Terminology and Comments

LP vs. DP
LP refers to a specific mathematical model that can be
solved by a variety of techniques.

DP deals with a particular analytical approach, which can
be applied to a variety of mathematical models.
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6.17

Example 2

Solve the simple shortest path problem in Example 1 with the
optimal value function T (i) defined to be the length of the
shortest path from node A to i .
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6.18

Example 2

T (i) defined to be the length of the shortest path from node A
to i .
Answer: T (B) =the length of the shortest path from node A to
B
Boundary condition: T (A) = 0
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6.19

Example 2

Recurrence relation:

T (C) = 3 + T (A), T (D) = 2 + T (A)
T (E) = 7 + T (C), T (F ) = min{6 + T (C),9 + T (D)}, T (G) = 5 + T (D)

...
T (O) = min{7 + T (L),4 + T (M)}, T (P) = min{10 + T (M),6 + T (N)}

T (B) = min{4 + T (O),3 + T (P)}
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6.20

Example 2

i T (i) P(i)
A 0 A
C 3 A
D 2 A
E 10 C
F min{6 + T (C),9 + T (D)} = 9 C
G 5 + T (D) = 7 D
H 4 + T (E) = 14 E
I min{3 + T (E),3 + T (F )} = 12 F
J min{4 + T (F ),7 + T (G)} = 13 F
K 6 + T (G) = 13 G
L min{5 + T (H),5 + T (I)} = 17 I
M min{6 + T (I),4 + T (J)}=17 J
N min{4 + T (J),4 + T (K )} = 17 J/K
O min{7 + T (L),4 + T (M)} = 21 M
P min{10 + T (M),6 + T (N)} = 23 N
B min{4 + T (O),3 + T (P)} = 25 O
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6.21

Example 2

i T (i) P(i)
A 0 A
C 3 A
D 2 A
E 10 C
F min{6 + T (C),9 + T (D)} = 9 C
G 5 + T (D) = 7 D
H 4 + T (E) = 14 E
I min{3 + T (E),3 + T (F )} = 12 F
J min{4 + T (F ),7 + T (G)} = 13 F
K 6 + T (G) = 13 G
L min{5 + T (H),5 + T (I)} = 17 I
M min{6 + T (I),4 + T (J)}=17 J
N min{4 + T (J),4 + T (K )} = 17 J/K
O min{7 + T (L),4 + T (M)} = 21 M
P min{10 + T (M),6 + T (N)} = 23 N
B min{4 + T (O),3 + T (P)} = 25 O
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6.22

Example 3

Solve the simple shortest path problem in Example 1 with the
cost of the path to be the largest cost between two nodes on
the path.
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6.23

Example 3

Define
S(i) = the length of the shortest path from i to B

Answer: S(A)

Boundary condition: S(B) = 0
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6.24

Example 3

Recurrence Relation:

S(A) = min{max{aAC ,S(C)},max{aAD,S(D)}}
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6.25

Example 3

Recurrence Relation:

S(A) = min{max{aAC ,S(C)},max{aAD,S(D)}}
S(C) = min{max{aCE ,S(E)},max{aCF ,S(F )}}
S(D) = min{max{aDF ,S(F )},max{aDG,S(G)}}

...
S(O) = max{aOB,S(B)}
S(P) = max{aPB,S(B)}
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6.26

Example 3

Recurrence Relation:

S(A) = min{max{aAC ,S(C)},max{aAD,S(D)}}
S(C) = min{max{aCE ,S(E)},max{aCF ,S(F )}}

...
S(O) = max{4,S(B)} = 4,S(P) = max{3,S(B)} = 3

⇒ The optimal solution S(A) = 6 and the optimal path is
A→ C → F → I → M → O → B and
A→ D → G→ K → N → P → B.
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6.27

Example 4

We seek the path connecting A with any point on line B which
minimizes the total cost, where the number associated with
each arc is the cost of traversing that arc.
Assume that admissible paths are always continuous and
always move toward the right.
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6.28

”Give a dynamic-programming formulation" means:

(i) Define an appropriate optimal value function, including
both a specific definition of its arguments and the meaning
of the value of the function.

(ii) Write an appropriate recurrence relation.

(iii) Define an appropriate optimal policy function.

(iv) Note the appropriate boundary conditions.

(v) A representation of the answer.
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6.29

Example 4

(i) OPTIMAL VALUE FUNCTION: f (x , y) is defined to be the
value of the minimum cost path from node (x , y) to any
point on line B, for x = 0,1, · · · ,4 and
y = −x ,−x + 2, · · · , x .

(ii) RECURRENCE RELATION:

f (x , y) = Min{au(x , y)+f (x+1, y+1),ad (x , y)+f (x+1, y−1)}
where au(x , y) is the cost of the arc that goes upward from
(x , y), and ad (x , y) is the cost of the arc that goes
downward.
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6.30

Example 4

(iii) OPTIMAL POLICY FUNCTION: P(x , y) = U (up) if
au(x , y) + f (x + 1, y1) ≤ ad (x , y)+
f (x + 1, y − 1), otherwise P(x , y) = D (down). Here U
means that the optimum path should go diagonally upward
at (x , y) and D means downward.

(iv) BOUNDARY CONDITIONS: f (4, y) = 0 for
y = −4,−2,0,2,4.

(v) ANSWER TO BE SOUGHT: f (0,0).
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6.31

Example 4

With the formulation, we get the following solution

f (3,3) = min{3,1} = 1 P(3,3) = D (down)
f (3,1) = min{2,5} = 2 P(3,1) = U

...
f (0,0) = min{1 + f (1,1),0 + f (1,−1)}

= min{1 + 7,0 + 10}
= 8 P(0,0) = U

Now, since P(0,0) = U, P(1,1) = U, P(2,2) = D, P(3,1) = U,
the optimal path is (0,0)→ (1,1)→ (2,2)→ (3,1)→ (4,2).
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6.32

Example 4

Normally, DP computations are done by computers. In case
that the computations are carried out by hand, it is better to
write down the results in a tabular form. For the above
example, the computation results can be written as in the
following table.
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6.33

Exercise 1

Solve the problem in Figure by using the optimal value function

S(x , y) = the value of the minimum cost path from A to node (x , y).
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6.34

A more complicated example

The numbers associated with the arcs are the costs of
traversing these arcs. At any vertex on our way from A to B if
we turn rather than continue in a straight line, an additional
cost of 3 is assessed. No penalty is assessed if we continue
straight on. Find the shortest path from A to B.
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6.35

A more complicated example - con’t

(i) OPTIMAL VALUE FUNCTION:
S(x , y , z) = the minimum attainable sum of arc numbers
plus turn penalties if we start at the vertex (x , y), go to B,
and move initially in the direction indicated by z, where z
equals 0 denotes diagonally upward and z equals 1
denotes diagonally downward.
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6.36

A more complicated example - con’t

(ii) RECURRENCE RELATION:

S(x , y ,0) = au(x , y) + Min
{

S(x + 1, y + 1,0)
3 + S(x + 1, y + 1,1)

}
and

S(x , y ,1) = ad (x , y) + Min
{

3 + S(x + 1, y − 1,0)
S(x + 1, y − 1,1)

}
.
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6.37

A more complicated example - con’t

(iii) OPTIMAL POLICY FUNCTION:
P(x , y , z) = U means that ‘up’ is the optimal second
decision if we start at (x , y) and move first in the direction
indicated by z.
A similar definition holds for P(x , y , z) = D.
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6.38

A more complicated example - con’t

(iv) BOUNDARY CONDITIONS: S(6,0,0) = 0 and S(6,0,1) = 0.
(v) ANSWER TO BE SOUGHT: min{S(0,0,1),S(0,0,0)}.



Introduction to
Dynamic

Programming

Introduction

A simple path example

Terminology and
Comments

More path problems

A More Complicated
Example

Computational
Efficiency

Doubling-up Procedure

6.39

Solution of the example

s(x , y ,0) y
x −3 −2 −1 0 1 2 3
6 * * * 0 * * *
5 * * 3U * * * *
4 * 9U * 11D * * *
3 13U * 15U * 19D * *
2 * 22U * 22U * 23D *
1 * * 31U * 30U * *
0 * * * 32D * * *

s(x , y ,1) y
x −3 −2 −1 0 1 2 3
6 * * * 0 * * *
5 * * * * 4D * *
4 * * * 16U * 11D *
3 * * 16U * 20U * 16D
2 * 22U * 20D * 23D *
1 * * 27D * 26D * *
0 * * * 29D * * *

Optimal path: (0,0,1)29D → (1,−1,1)27D → (2,−2,1)22U →
(3,−3,0)13U → (4,−2,0)9U → (5,−1,0)3U → (6,0,0)
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6.40

Computational efficiency

In the following figure, where N is assumed to be even, if the
shortest path is to be found by using DP approach as in
Example 1, find the number of additions and comparisons are
required for the dynamic programming solution.
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6.41

Computational efficiency

S(x , y) = min
{

au(x , y) + S(x + 1, y + 1),
ad (x , y) + S(x + 1, y − 1)

}
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6.42

Computational efficiency

S(x , y) = min
{

au(x , y) + S(x + 1, y + 1),
ad (x , y) + S(x + 1, y − 1)

}
(i) there are N vertices (those on the line CB and DB,

excluding B) at which one addition and no comparisons
are required.
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6.43

Computational efficiency

S(x , y) = min
{

au(x , y) + S(x + 1, y + 1),
ad (x , y) + S(x + 1, y − 1)

}
(ii) there are (N

2 )
2 remaining vertices at which two additions

and one comparison are required.
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6.44

Computational efficiency

(i) there are N vertices (those on the line CB and DB,
excluding B) at which one addition and no comparisons
are required.

(ii) there are (N
2 )

2 remaining vertices at which two additions
and one comparison are required.

⇒ A total of N2/2 + N additions and N2/4 comparisons are
needed for the dynamic-programming solution.
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6.45

Enumeration method

Consider the number of additions and comparisons using
enumeration method for an N-stage problem.
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6.46

Enumeration method

Consider the number of additions and comparisons using
enumeration method for an N-stage problem.

- There
( N

N/2

)
admissible paths.

- Each path requires N − 1 additions, and all but the first
one evaluated require a comparison in order to find the
best path.

- Total
((N−1)N

N/2

)
additions and

( N
N/2−1

)
comparisons.
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6.47

Computational efficiency

For N-stage shortest path problem:
- DP: N2/2 + N additions and N2/4 comparisons

- Enumeration: (N − 1)
( N

N/2

)
additions and

( N
N/2

)
− 1

comparisons

If N = 6:
- DP: 24 additions and 9 comparisons

- Enumeration: 100 additions and 19 comparisons

If N = 20:
- DP: 220 additions and 100 comparisons

- Enumeration: more than 3 million additions and 184,000
comparisons

⇒ In general, the lager the problem, the more impressive the
computational advantage of DP.
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6.48

Exercise

How many additions and how many comparisons are required
in the DP solution and in enumeration for an N-stage problem
involving a network of the type shown in the following figure?
Evaluate your formulas for N = 20.
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6.49

The Doubling-up procedure

Assume all arcs point diagonally to the right, and assume that
while as usual the arc costs depend on their initial and final
vertices, they do not depend on the stage (i.e., the x
coordinate). Such a repeating cost pattern is called
stage-invariant and when the stage is often time, it means that
costs do not vary with time, only with the nature of the decision.
An eight-stage example of such a network with terminal costs
as well as arc costs is shown in the following figure.

Goal: Devise a procedure for doubling at each iteration the
duration of the problem solved.
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6.50

OPTIMAL VALUE FUNCTION:

S(y1, y2, k) =the cost (ignoring terminal costs) of the
minimum-cost path of lengthk stages connecting
y = y1 and y = y2

We obtain a RECURRENCE RELATION for this function by
seeking the optimal value of y at the midpoint of a path of
duration 2k stages connecting y1 and y2. The formula is
therefore

S(y1, y2,2k) = min
y=0,1,2

[S(y1, y , k) + S(y , y2, k)]
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6.51

BOUNDARY CONDITION:

S(y1, y2,1) = a(y1, y2)

where a(y1, y2) is the cost of the single arc directly connecting
y1 to y2 in one step.

ANSWER TO BE SOUGHT:

min
y1,y2=0,1,2

[t0(y1) + S(y1, y2,8) + t8(y2)]

where the terminal costs are denoted by t0(y) for x = 0 and
t8(y) for x = 8.
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6.52

OPTIMAL POLICY FUNCTION:
P(y1, y2,2k) = the midpoint on the best path of duration 2k
stages connecting y1 and y2.
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6.53

By the Boundary condition, we can have

S(y1, y2,1) y2
y1 0 1 2
0 2 1 3
1 1 2 4
2 3 1 2
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6.54

Use S(y1, y2,1) and the recurrence relation to obtain the
optimal two-stage solution for all pair of end points.

S(y1, y2,1) y2
y1 0 1 2
0 2 1 3
1 1 2 4
2 3 1 2

S(y1, y2,2k) = min
y=0,1,2

[S(y1, y , k)+S(y , y2, k)]

S(0,0,2) = min[S(0,0,1) + S(0,0,1),S(0,1,1)
+ S(1,0,1),S(0,2,1) + S(2,0,1)]
= min[4,2,6] = 2, P(0,0,2) = 1
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6.55

S(y1, y2,2k) = min
y=0,1,2

[S(y1, y , k) + S(y , y2, k)]

S(0,0,2) = min[S(0,0,1) + S(0,0,1),S(0,1,1) + S(1,0,1),
S(0,2,1) + S(2,0,1)]
= min[4,2,6] = 2, P(0,0,2) = 1

S(0,1,2) = min[S(0,0,1) + S(0,1,1),S(0,1,1) + S(1,1,1),
S(0,2,1) + S(2,1,1)]
= min[3,3,4] = 3, P(0,1,2) = 0 or 1

S(0,2,2) = min[2 + 3,1 + 4,3 + 2] = 5, P(0,2,2) = 0,1, or 2;
S(1,0,2) = min[3,3,7] = 3, P(1,0,2) = 0 or 1;
S(1,1,2) = min[2,4,5] = 2, P(1,1,2) = 0;
S(1,2,2) = min[4,6,6] = 4, P(1,2,2) = 0;
S(2,0,2) = min[5,2,5] = 2, P(2,0,2) = 1;
S(2,1,2) = min[4,3,3] = 3, P(2,1,2) = 1 or 2;
S(2,2,2) = min[6,5,4] = 4, P(2,2,2) = 2;
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6.56

Using the recurrence relations with k = 2 to solve all four-stage
problems.

S(0,0,4) = min[S(0,0,2) + S(0,0,2),S(0,1,2) + S(1,0,2),
S(0,2,2) + S(2,0,2)]
= min[2 + 2,3 + 2,5 = 2] = 4, P(0,0,4) = 0

S(0,1,4) = min[2 + 3,3 + 2,5 + 3] = 5, P(0,1,4) = 0;
S(0,2,4) = min[7,7,9] = 7, P(0,2,4) = 0 or 1;
S(1,0,4) = min[5,5,6] = 5, P(1,0,4) = 0 or 1;
S(1,1,4) = min[6,4,7] = 4, P(1,1,4) = 1;
S(1,2,4) = min[8,6,8] = 6, P(1,2,4) = 1;
S(2,0,4) = min[4,6,6] = 4, P(2,0,4) = 0;
S(2,1,4) = min[5,5,7] = 5, P(2,1,4) = 0 or 1;
S(2,2,4) = min[7,7,8] = 7, P(2,2,4) = 0 or 1;
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6.57

Using the recurrence relations with k = 4 to solve all
eight-stage problems.

S(0,0,8) = min[S(0,0,4) + S(0,0,4),S(0,1,4) + S(1,0,4),
S(0,2,4) + S(2,0,4)]
= min[8,10,11] = 8, P(0,0,8) = 0

S(0,1,8) = min[9,9,12] = 9, P(0,1,8) = 0 or 1;
S(0,2,8) = min[11,11,14] = 11, P(0,2,8) = 0 or 1;
S(1,0,8) = min[9,9,10] = 9, P(1,0,8) = 0 or 1;
S(1,1,8) = min[10,8,11] = 8, P(1,1,8) = 1;
S(1,2,8) = min[12,10,13] = 10, P(1,2,8) = 1;
S(2,0,8) = min[8,10,11] = 8, P(2,0,8) = 0;
S(2,1,8) = min[9,9,12] = 9, P(2,1,8) = 0 or 1;
S(2,2,8) = min[11,11,14] = 11, P(2,2,8) = 0 or 1;
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6.58

Now, using

min
y1,y2=0,1,2

[t0(y1) + S(y1, y2,8) + t8(y2)]

to obtain the value of the answers and the optimal choice of the
initial and terminal points.

answer = min[t0(0) + S(0,0,8) + t8(0), t0(0) + S(0,1,8) + t8(1),
t0(0) + S(0,2,8) + t8(2), t0(1) + S(1,0,8) + t8(0),
t0(1) + S(1,1,8) + t8(1), t0(1) + S(1,2,8) + t8(2),
t0(2) + S(2,0,8) + t8(0), t0(2) + S(2,1,8) + t8(1),
t0(2) + S(2,2,8) + t8(2)]
= min[3 + 8 + 5,3 + 9 + 4,3 + 11 + 1,2 + 9 + 5,2 + 8 + 4,
2 + 10 + 1,1 + 8 + 5,1 + 9 + 4,1 + 11 + 1]
= 13 with y1 = 1, y2 = 2, and y1 = 2, y2 = 2 both yielding that value.
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6.59

Construct the optimal path:

1− 0− 1− 0− 1− 0− 1− 0− 2,2− 1− 0− 1− 0− 1− 0− 0− 2,
2− 1− 0− 1− 0− 1− 0− 1− 2,2− 1− 0− 1− 0− 1− 0− 2− 2,
2− 1− 0− 1− 0− 0− 1− 0− 2,2− 1− 0− 1− 0− 1− 1− 0− 2,
2− 1− 0− 0− 1− 0− 1− 0− 2,2− 1− 0− 1− 1− 0− 1− 0− 2,
2− 1− 1− 0− 1− 0− 1− 0− 2,2− 2− 1− 0− 1− 0− 1− 0− 2,
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6.60

Computational efficiency

Assume the duration is 2N stages and there are M states at
each stage.

For doubling-up,
- Each doubling of k requires M additions for each of M2

pairs (y1, y2).
- Double-up N times to solve the 2N -stage problem

(neglecting the terminal costs).
- So N ·M3 additions are needed.

For the usual procedure,
- Each stage requires M2 additions (M decisions at each of

M points).
- So, roughly 2N ·M2 additions are needed.

For N = 3 and M = 3, the usual one-state-variable procedure
is slightly better.
But for N = 4, doubling-up dominates.
No matter what M is, for large enough N, doubling-up will
dominate.
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6.61

To solve using doubling-up, say 12-stage problem, one can
combine S(y1, y2,8) and S(y1, y2,4) by the formula

S(y1, y2,12) = min
y

[S(y1, y ,8)] + S(y , y2,4)] (1)

Generally, we have the formula

S(y1, y2,m + n) = min
y

[S(y1, y ,m)] + S(y , y2,n)] (2)

which raises some interesting questions about the minimum
number of iterations to get to some given duration N.

Problem:
Using doubling-up and formulas like (1), how many iterations
are needed for duration 27? Can you find a procedure using
(2) that requires fewer iterations?
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